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ABSTRACT

In the classical theory of competing risks (as well as in many reliability
models and incomplete data problems) it is assumed that (a) the risks (i.e.,
the random variables of interest) are independent and that (b) death does not
result from simultaneous causes. Employing our probabilistic solution to a

related problem in probability modelling, we obtain strongly consistent esti-

are analogous to those of Kaplan and Meier [J. Amer. Statist. Assoc. (1958) 63)
and are appropriate when the assumptions of independence and no simultaneous
causes of death [(a) and (b), above] fail to hold. We show how our methods can

be used to unify and simplify the nonparametric approach toward estimation in

the competing risks model. As a consequence we obtain an elementary proof of

the strong consistency of the Kaplan-Meier estimator. Our results extend and

simplify the work of Peterson [J. Amer. Statist. Assoc. (1977) 72] and Desu

and Narula [The Theory and Applications of Reliability, I, ed. by I. Shimi and

C. P. Tsokos (1977)].
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1. Introduction and summary.

Langberg, Proschan, and Quinzi (1978) [hereafter referred to as LPQ (1978)]
show that under certain mild conditions it is possible to establish a particular
equivalence between an arbitrary system of dependent components and a system of
independent components. The two systems are equivalent in the sense that they
possess (1) the same distribution for the time to system failure and (2) the
same probabilities of occurrence of each failure pattern. In the case of a
series system, a particular failure pattern occurs when the failure of a
particular set of components coincides with the failure of the system. The
LPQ (1978) result extends results by Miller (1977) and Tsiatis (1975). In
Section 2 we state the LPQ (1978) result. Although formulated in reliability
terms, the result applies to any model where observations consist of (1) the
time at which a particular event occurs and (2) the identity of the cause or
combination of causes (among a finite number) which results in the occurrence
of the event. In particular, in population mortality studies, the data on
each subject includes (1) the age at death and (2) the cause(s) of death. In
this case, an individual dies due to the occurrence of one or more of a finite
number of possible causes of death, which are sometimes viewed as '"competing"
for the individual's life. Moreover, one or more of the "causes'" might be
identified with withdrawal of an individual from observation [referred to as a
"loss"], resulting in censored or truncated data. Thus, the LPQ (1978) result,
as well as the methods developed in this paper, apply in at least three contexts
of interest--(1) engineering or reliability models, (2) competing risks models,
and (3) various models involving incomplete data.
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In the classical theory of competing risks it is assumed that the risks
act independently and that death does not result from simultaneous causes. In
Section 3 we describe the competing risks model. We examine the classical
assumptions and introduce the Kaplan-Meier (1958) (K-M) estimator. Employing
the LPQ (1978) result, we obtain in Section 4 strongly consistent estimators
for the unobservable marginal distributions of interest in the competing risks
model. These estimators are analogous to those of Kaplan and Meier (1958)
and are appropriate when the assumptions of independence and no simultaneous
causes of death fail to hold. We show how our methods can be used to unify
and simplify the nonparametric approach toward estimation in the competing risks
model. As a consequence we obtain an elementary proof of the strong consis-
tency of the Kaplan-Meier estimator.

Our results extend and simplify the work of Desu and Narula (1977) and

Peterson (1975, 1977). Section 5 consists of proofs.




2. From a dependent model to an independent one.

In this section we state, for future reference, the equivalence result of
LPQ (1978).

To state our model precisely, it is convenient to use the language of
reliability theory (system, component, etc.) although the result is applicable
in a variety of other contexts, especially in the context of competing risks
(see Section 3). A life length T is a nonnegative random variable such that
lint_.. P(T>t) =0, LetT-= ('1‘1, sisteis Tr) be the vector of component life
lengths in an r-component system and let T denote the life length of the
system. Let I denote the collection of nonempty subsets of {1, ..., r}. For

each I ¢ I,we say that failure pattern I occurs if the simultaneous failure of

the components exclusively in subset I coincides with the failure of the

system. Define
I, if failure pattern I occurs

E(T) =
¢, otherwise.
Let S and T represent the vectors of component life lengths of two systems
whose system life lengths are S and T, respectively. We say that the two
systems are equivalent in life length and failure patterns (S Le T, in symbols)

if

P(S>t.€(§)-l)-P(‘l‘>t,£(’_l)-I).t20,

for every 1 ¢ 1.
The problem can now be stated as follows. Given the vector T = (‘l'l. sy 'l'r)
of (possibly dependent) life lengths, determine a random vector § = (sl. sk sr)




such that § &k T, where S|, ..., 5_ are expressible in terms of independent

£

random variables. The solution is found by letting each 81 be the life length

of a component in a theoretical system, where the components are exposed to

N i a s il

independent sources of shock as follows. Each component fails if it receives

~ a shock. There exists one source of shock (sometimes referred to as a
"hamnerman') for each I ¢ I. A shock from source I simultaneously kills the
components exclusively in subset I. Let H; denote the time (measured from the
origin) until a shock from source I occurs. Then S1 = lin(Hl, iel,
lsisr,and S=H, wheres-nin(si,lsisr)andl-l-l:ln(l-ll, I1el). If
the random vector T (and thus, S) of life lengths has dimension r, then the
vector H of independent times until shock has dimension 2* - 1. The model

‘ thus allows for simultaneous failures among the components in the origi!;ll

system. Defipe

I, ifHI<HJforuchJ#I

E*(H) =
¢, otherwise.

It follows that S && T if and only if
PH>E, E*A) = 1) = P(T> ¢, £(D = ) 2.1)

for each t 2 0 and each I € I. If (2.1) holds for every subset I of {1, ..., r},
we write !m T. We shall use the following notation throughout. For every

1ife length T with distribution function F, let F(t) = P(T > t) denote the
corresponding survival probability and let a(F) = sup{t: F(t) > 0}. LPQ (1978) ,

pzove the following:
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Theorem 2.1, Let T = min('l‘i, 1 i < r) denote the life length of an r-component

series system, where 'l‘i represents the life length of component i, i = 1, ..., r.

Define F(t, I) = P(T > t, £(T) = I) and F(t, I) = P(T s t, E(T) =1I), I e 1.
Then the following statements hold:

(i) A necessary and sufficient condition for the existence of a set of inde-

pendent random variables {HI, I € 1} which satisfy ELE'L where H = nin(HI, Iel,

is that the functions F(., I), I € T, have no common discontinuities in the

interval [0, a(F)).

(ii) The random variables (HI, I € I} in (i) have corresponding survival

probabilities {El(o), I € I} which are uniquely determined on the interval

[0, a(F)] as follows:

G(e) = 1 [F@)/Fa)] expl-fg@F°(:, D/M, 05t < afF), (2.2)
ast

where Fc(-, I) is the continuous part of F(-, I), the product is over the set
of discontinuities {a} of F(-, I), I € 1, and the product over an empty set
is defined as unity.

Remark 2.2. Formula (2.2) is defined in LPQ (1978) for t in the half-open

interval [0, a(F)). The present formulation is, however, equivalent.

Remark 2.3. In Theorem 2.1, suppose that failure pattern I is non-occurring
for some I ¢ I, i.e., suppose P(§(T) = I) = 0. Then F(t, I) = P(T s t,

E(T) = I) = 0 for each t 2 0. By (2.2), EI 2 1 on the interval [0, a(F)].

The corresponding random variable HI has a distribution which places no mass on
the interval [0, a(F)]. We can view HI as corresponding to a hammerman who
does not strike in the interval [0, a(F)]. If a(F) = =, then HI is degenerate




at infinity (and so is not a life length). In the same way, every non-occurring
pattern can be associated with a hammerman who does not strike. It follows
from Theorem 2.1 that if the original system has exactly m occurring failure
patterns, 1 < m < 2 - 1, then the original system is equivalent in life

length and failure patterns to a system involving the same number m of inde-
pendent random variables {Hi’ 1 sis<m}. In particular, suppose we add to

the hypothesis of Theorem 2.1 the assumption that death (failure) does not
result from simultaneous causes (so that p('ri = Tj) =0 for i # j). Then

the original system has at most r occurring failure patterns and so can be

replaced by a system involving at most r independent random variables Hi'

Remark 2.4. Suppose that the original vector T in Theorem 2.1 is itself a
vector of independent random variables and the functions F(-, I), I ¢ I, have
no common discontinuities. Then it is not difficult to show that a solution

S to the above problem is such that S and T have the same distribution.




3. The independent competing risks model: the Kaplan-lleier estimator.

Let there be a finite number of causes of death labelled 1, ..., r. We
associate with each cause j a nonnegative random variable T,, j =1, ..., r.
The random variable Tj represents the age at death if cause j were the only
cause present in the environment. [In a reliability setting Tj denotes the
life length of component j in a series system of r components. In an incomplete
or censored data problem, one of the random variables Tj represents the time at
which an individual becomes "unobservable" for a reason other than death, while
the remaining variables typically represent various causes of death. The
complete collection of random variables Tl’ e s Tr is not observed. Instead,
only two quantities are observed: the age at death given by 1 = nin(Tl, ~i% Tr)

and the cause of death, labelled £, given by the subset I of {1, ..., r} such

that t = Ti for each i e I and 1 = Ti for each i ¢ I. When death results from
exactly one of the r possible causes, as is usually assumed, then £ is the

index i for which t = Ti. The biomedical researcher is interested in making
inferences about unobservable quantities (viz., the random variables Tl, Sy Tr)
by using data from observable quantities--in this case, the lifetime t and

the cause of death £. In particular, he seeks to estimate the marginal

survival probability corresponding to a given cause (or combination of causes)
operating along without competition from the other causes. That is, he wishes

to estimate the 2° - 1 survival probabilities
ﬁ&(t) = P[nin(Tj, Jed) e} ey, ivpth

In analyzing competing risk data, various authors typically assume one

or more of the following:




(A1) The risks (i.e., the random variables 'l'l, s 'l‘r) are mutually independent.
(A2) Death does not result from simultaneous causes. [Consequently,

P(T, = 'rj) =0 for i #j.]

(A3) The distributions of Tl’ siaieis Tr have no common discontinuities.

(A4) The random variables Tl, SO 'l‘r have a joint distribution which is
absolutely continuous.

For many years there have been several approaches to problems of estimation

in competing risk theory which employ, in varying degrees, the above assumptions.
For example, the assumption of independence (Al) was until recently almost
universally made even though it is obviously inappropriate in many problems.
Moreover, assumptions (A2) through (A4) need not hold in certain situations of
interest. For example, (A2) and (A4) do not hold in engineering systems where
system failure can occur as a result of the simultaneous failures of two (or
more) components. Assuming (Al), (A2) and (A3), Peterson (1975, 1977) shows
how the Kaplan-Meier estimator may be expressed as a function of the empirical
counterparts of the functions F(-, I), I € I, in Theorem 2.1. He thus indicates
a way to obtain strong consistency of the estimator when T is a vector of
discrete random variables. In this paper we show how Theorem 2.1 can be used
to approach the prcblem of estimating the marginal distributions of interest
in a unified way without making any of the assumptions (A2), (A3), or (Ad).
Ne assume only a weaker version of (A3). Moreover, we are able to drop the
assumption of independence (Al) and find necessary and sufficient conditions
for the existence of consistent estimators for the marginal distributions of
interest. Peterson (1975) also considers the case of dependent risks. In

Section 4 we show how our methods extend and simplify those of Peterson.

et A L K B




Let Ll = (Tli, alels Tri)’ i=1, ..., n, represent a random sample from

the joint distribution of the nonnegative random variables 'l‘l, vy L r

Denote the marginal distributions (survival probabilities) of Tl’ S Tr

by Mi(ﬁi), i=1, ..., r. For each I e, let M/ (t) = P(T, < t), where

T, = nin(’l‘i, i € I). Assume (Al), (A2), and (A3). Then the cause of death

1
E(I)-iifandonlyif'l‘i<'l‘j for each j = i, 1 s i, j s r. For each
i=1, ..., n, only T and Ei are observed, where - nin('l‘u, vy Tri) and
& = j whenever t ;" Tj i Consider the case r = 2 and suppose we seek to
estimate the marginal survival probability Nl1 (t) = l’(’l’1 > t). Let

= < S ive S
0 1(0) t(l) ‘t(n) denote the ordered values of the observations

T Then the Kaplan-Meier (K-M) estimator of ﬁl (t) is

1, ooy Tna

My () = - /(- e D, (5.1)

where the product is over the ranks i of those ordered observations T4y’

1 <i<n, such that ‘t(i) Stc«< T(n) and 1'(1) corresponds to a death from

cause 1 [t W - ‘l'l j for some j]. If T(n) corresponds to a death from cause
1, then Ml(t) is defined to be zero for t > T(n
undefined for t > ‘t(n). [In the original formulation by Kaplan and Meier (1958),

)+ Otherwise, ﬁl (t) is

T

1 corresponded to the time until death, while ‘l‘2 represented the time at which

a loss occurred.]

The K-M estimator (3.1) is a step function with jumps at those observations
L which correspond to a death from cause 1. If no death from cause 2 is observed
[no loss occurs], then each observation corresponds to a death from cause 1.
In this case (3.1) reduces to a step function with jumps of height 1/n at each

t;» thus yielding the usual empirical estimate of ﬁl (t).
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Peterson (1-75) considers the following straightforward extension of (3.1)
for the survival probabilities ﬁ&(t) = P('l‘J >t), Jc{l, ..., v}, where

TJ = min(Tj, j €J) and r 2 2. The (exterded) K-M estimator ﬁs is given by

My(e) = 1 [ - /@ - 1+ D],
i

where now the product is over the ranks i of those ordered observations T(i)
such that T(i) stc< T(n) and t(i) corresponds to a death from at least one
cause j € J. Conventions analogous to those used in defining (3.1) also hold
in (3.2) when t > Tin)'

Assuming independence (Al), no simultaneous causes of death (A2), and
disjoint sets of discontinuities for the marginal distributions (A3), Peterson
(1977) indicates a way to obtain strong consistency of the K-M estimator (3.1)
in the special case when the random variables Tl’ S50 T; are discrete.
Breslow and Crowley (1974) etc. Breslow and Crowley (1974) and Meier (1975)
show that the estimator is asymptotically normal and, as a process in t,
converges to a normal process. More recently, Aalen (1976) shows that the
bivariate vector of K-M estimators (1 - ﬁi(tl)' 1 - ﬁé(tz)) is asylptotically.
bivariate normal, and that, regarded as a bivariate process in tl and t,
converges to a normal process. Estimators analogous to (3.1) and (3.2) are
proposed in the next section by using formula (2.2) of Theorem 2.1. Such
extensions will apply in situations where the assumptions of independence (Al)

and no simultaneous causes of death (A2) fail to hold.
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4. The dependent case.

In this section we show how formula (2.2) can be used to unify and
simplify the nonparametric approach toward estimation in the competing risks
model when independence of risks is not assumed. First, we show how (2.2)

easily establishes a functional relationship between distributions of '"'theoretical”
random variables [the {HI’ I € 1} of Theorem 2.1] which are unobservable (but
estimable) and the marginal distributions Mi’ 1 <isr, (of unobservable
variables) for which we seek estimates. Under a weaker version of assumption
(A3), consistent estimators analogous to (3.2) are given.

In the probabilistic problem discussed in Section 2, our solution (Theorem
2.1) can be described as follows. Replace the given series system of dependent
components by a '"'theoretical" system whose component life lengths are expressible
in terms of independent random variables so as to preserve the joint distribution
of system 1life length and failure patterns. The components in the so-called
theoretical system are exposed to shocks from "hammermen" whose striking times
HI’ I ¢ I, have distributions defined by (2.2). A series system of r components
with depen-'ent 1ife lengths 1'1, g Tr’ and system life length
T= nin('l‘i, 1 i< r) becomes, in the terminology of competing risks, an
individual exposed to r dependent risks of death, where Ti represents the
age at death if risk i were the only risk present in the environment,
i=1, ..., r. In this section, unless otherwise indicated, we drop the
assumption (Al) of independent risks. With respect to the estimation problem

posed in Section 3, formula (2.2) exhibits a relationship between distributions
of observable quantities and distributions associated with theoretical variables
I-lt. I ¢ 1, which are unobservable. The observable quantities in the competing




risks model are the life length t = min('l‘i, 1 s i< 1r)and the cause of death
€. The functions associated with these observable quantities ,'viz., the survival
probability F(t) = P(T > t) and the monotonic functions F(t, i) = P(T s t,
E(T) = i), 1 S i < r, appear on the right hand side of (2.2). Thus replacing
F(t) and F(t, i) in (2.2) with their empirical counterparts allows us to
estimate the distributions G;, 1 < i s r, associated with the unobservable
variables Hi’ 1 sic<r. However, the distributions Gi' 1<sisr, are, in
general, different from the marginal distributions Mi‘ 1sisr, which we
seek to estimate. The natural question then is how to relate the unobservable
(but estimable) functions Gi’ 1s<is<r, to the marginal distributions
Mi’ 1sisr, More generally, how can we relate the functions MI, Iel, to
the survival probabilities G,, I € I, given by (2.2)? One answer can be
given as follows. That is, suppose for a moment that Tl, %lolety 'l‘r are, in fact,
independent and that the following holds:
(A3)*' The functions F(*, I), I € 1, in Theorem 2.1 have no common discontinuities.
Then by Remark 2.4, Gi = Mi’ i=1, ..., r. Consequently,

ﬁl(t) = I ﬁi(t) = I Ei(t) 4.1)

iel iel

for every t € [0, a(F)]. What are the corresponding estimators? It is a
simple exercise to show that in the case r = 2, if we replace the functions

F(t) and F(t, 1) on the right in (2.2) by their empirical counterparts, then

the resulting statistic is the K-M estimator (3.1) of l’(‘l‘1 > t). In view of
(4.1), 1f r is an arbitrary integer greater than 2, a reasonable estimator for
W, (t) ought to be I G, (t), where the product is over i ¢ I and G, 1s the
function resulting from (2.2) by replacing the functions F(-) and F(., i) with
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their empirical counterparts, i =1, ..., r. Again, it is easy to show that
the resulting statistic is, in fact, the (generalized) K-M estimator (3.2)
for ﬁl(t). Thus, in the case of independent risks, (2.2) leads directly to
well-known estimators possessing several optimal properties. It is therefore
reasonable to expect that (2.2) also plays a role in the estimation problem

when the risks are mutually dependent. This is, indeed, the case.

Theorem 4.1. [Peterson (1975)]. Let Tl’ e Tr be nonnegative random

variables satisfying (A2) and (A3) [but not necessarily (Al)]. Let P be a
partition of {1, ..., r} and define E;'i, 1sisr, asin (2.2). Then for
each t ¢ [0, a(F)],

MI(t) = I eI Gi(t) for each I ¢ P (4.2a)

i

if and only if

P(T>t, §(T) € I) = I‘t' M., (x) dM (x) for each I ¢ P, (4.2b)

where I' denotes the complement of I in {1, ..., r}.

Peterson (1975) uses an operator defined on a space of distribution
functions to prove an equivalent version of Theorem 4.1. Employing Theorem
2.1, we give a proof which is considerably simpler. The following notation

e > o

and lemma is useful in interpreting (4.2a, b).

Let {‘ri. 1<is<sr})and {T,*, 1 <i <1} be two collections of random
variables. For each function f of the random variables Tl‘ iy 'l‘r, let £*
denote the value of the same function of 1‘1". vesy Tr*. For each set I

belonging to a partition P of {1, ..., r}, define Fp(t, I) =P(T>¢t, T ¢ I).

On the right in (2.2), replace F(t, I) by Pp(t, I) and call the resulting
expression C'I’P(t).
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The following simple lemma is useful in proving Theorem 4.1:

i Lemma 4.2. Assume the hypothesis of Theorem 4.1. Let T,*, ..., T * be
independent random variables such that TI' and TI have the same distribution
(i.e., MI* = MI) for each I € P. Then (4.2a) is equivalent to

EI:P = EI,P for each I ¢ P, (4.3a)
and (4.2b) is equivalent to

F

p(t, 1) = Fp‘(t. I) for each I ¢ P. (4.3b)

Proof. By (A2) and (A3), we have that MI and ltiJ have no common discontinuities
and P(TI = TJ) = 0 for each I, J e P, I #J. Since MI = MI*, we deduce that

P(TI* = TJ') = 0 for each I, J e P, I = J. It follows from Remark 2.3 that if

P has exactly k members, 2 < k s r, then each of the collections {‘I‘I, 1eP)

and {'l‘l", I € P} has at most k occurring failure patterns. By Remark 2.4,

e =Ty p (= . (4.4

By (2.2) and the fact that Fp(t, I) = ], F(t, 1),

GI,P = niel Gi' (4.5)

A simple calculation shows that

Fp*(t, I) = [: My, (x) M (x). (4.6)

The conclusion follows from (4.4), (4.5), and (4.6). ||
We now give the following elementary proof of Theorem 4.1.
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Proof of Theorem 4.1. By Lemma 4.2, it is enough to show that (4.3a) holds

if and only if (4.3b) holds.
Suppose first that (4.3b) holds. Since

F(&) = Iy p Fplt, D ane Fo(e) = J, , Feee, 1,

it follows from (2.2) that 1P = GI:P'
Conversely, suppose that (4.3a) holds. It follows from (2.2) that

F=n EI p and F*=n EI'P’ where each product is over I ¢ P. Since
» t]

F,,(t. I) = f: (F/EI.P)dGI.P

Fp*(t, 1) = f: (?-/EI:,,) dG*p

for each I ¢ P, relation (4.3b) holds. ||

One drawback of Peterson's formulation is that the assumption of no
simultaneous causes of death (A2) does not hold, e.g., in an engineering
system where system failure can occur as a result of the simultaneous failure
of two or more components. Moreover, Peterson (1975, 1977) assumes that the
marginal distributions of Tl‘ PRI ¢ have no common discontinuities (A3).
In Theorem 4.4 below we give necessary and sufficient conditions for a
functional relation to exist between the functions Ei in (2.2) and the functions
“I which we seek to estimate without assuming (A2). Our only assumption is

that the functions F(°, I), I ¢ I, have no common discontinuities in
[0, a(F)] [assumption (A3)']. Assumption (A3) implies (A3)', but the

converse does not hold.

doihdad




16

Another disadvantage in Peterson's (1975) approach can be described as

follows. In order to establish a relation between the function HJ for an

individual subset J of {1, ..., r} and the functions G., I ¢ I, in (2.2),

Peterson (1975) requires that (4.2b) hold simultaneously for each set I in

a partition P of {1, ..., r} which contains J. In general, it is not difficult

to construct joint distributions which satisfy none of the conditions in (4.2b)

yet for which at least one relationship exists between the function MJ and

the survival probabilities 'G'I, 161,

Example 4.3. Let the discrete random vector ('1‘1, ‘1‘2) have a joint probability

distribution as given in Table 4.1 below:

Table 4.1. Distribution of (Tl’ Tz)

T\"2 2 4 6
1 1/24 1/8 1/12
3 1/12 s 0
5 1/6 1/6 1/6

A simple calculation verifies that El given by (2.2) equals M,, but 52 » —2.

Furthermore, neither of the conditions (4.2b) is satisfied. Thus, Theorem 4.1

above is not applicable in this simple example. We will show, however, that

our generalization of Theorem 4.1 (Theorem 4.4 below) does apply here.

Before

we state Theorem 4.4, it will be conveneint to introduce the following notation.

Let II ={Jel: IJnl=4¢}. Let F(t, II) =P(T>¢t, &(T) ¢ II). Recall

that the cause of death is subset I [i.e., §(T) = I] if and only if T= T

ifo‘r




17

eachieclandT=T, for each i ¢ I. Thus, F(t, 1) =JP(T>t, §T) =J) =
JF(t, J), where each sum is over J ¢ I,. For each function G, let D(G)
[C(G)] denote the set of discontinuities (continuities) of G. Note that if
the functions F(*, I), I € I, have no common discontinuities, then D[F(-, II)] =
v D[F(., J)], where the union is disjoint over sets J ¢ II.

Theorem 4.4 below resembles Theorem 4.1 in that we find necessary and
sufficient conditions for a relationship to exist between the functions MI,
I ¢ I, and the survival probabilities G., I ¢ T, given by (2.2). It generalizes
Theorem 4.1 in the following ways. First, the assumption (A2) of no simultaneous
causes of death is dropped. Secondly, we assume a weaker version of assumption
(A3), namely the assumption (A3)' that the functions F(-, I), I € I, have no

common discontinuities.

Theorem 4.4. Let Tl’ v g . be nonnegative random variables satisfying (A3)'.
Let I ¢ I. Then for each t ¢ [0, a(F)],

M.(t) = T G,(t) 4.7)
1 Jell J

if and only if the following two conditions hold:

F(a)/F(a"), aeD(F(-, 1))

M (a)/My (@) = (4.8a)
1, otherwise.

P(Ty, 2 :|'rI =t) = P(Ty, > tl'rI >t), (4.8b)

where EJ is given by (2.2).
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The proof of Theorem 4.4 is given in Section 5.

Remark 4.5. Suppose that the random variables T, = nin(‘l‘i, iel), Iel1,

1
have absolutely continuous distributions., Let ll(t) [Ml(t)] and II“,(t)
[MI'I,(t)] denote respectively the density (distribution) function and condi-
tional density (distribution) function of TI and TI given TI' > t. Then

condition (4.8b) is equivalent to

mp|pe CE)/Mp 1 (8) = my(£)/My ().

In other words, the conditional failure rate function of 'I‘I given T,, > t is

I
equal to the (unconditional) failure rate function of TI. Stated differently,
the random variables TI and TI' are independent "along the diagonal 'l'I = ‘l‘l,".
Desu and Narula (1977) arrive at a condition similar to (4.8b) in the special
case when the assumption of absolute continuity (A4) [and hence also (A2)]
holds.

Note that conditions (4.8a, b), in contrast to (4.2b), apply to only one
subset I € T at a time. Consequently, we can proceed in Example 4.3 as follows.
It is easy to verify that conditions (4.8a, b) hold. Since '('3'{1‘2} s 1, it
follows from Theorem 4.4 that M, = El‘

WNe have previously remarked that the assumption (A2) of no simultaneous
causes of death is unrealistic in certain models of interest. An important
family of multivariate distributions for which assumption (A2) fails is the
family of multivariate exponential (MVE) distributions of Marshall and Olkin

(1967). NWe illustrate with an example.
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Example 4.6. For simplicity, suppose that the random vector (Tl, Tz) has the
Marshall-Olkin bivariate exponential distribution with survival probability:

l='('1'1 > tl' 'r2 > tz) = exp[-Altl - Aztz - 7‘12 llax(tl, tz)»],

for tl, t2 2 0 and Al’ Az, ‘12 > 0. Since the marginal distributions Ml and “2
are continuous, condition (4.8a) trivially holds. Condition (4.8b) with

I = {1} states that

P(T, 2 al'rl =t) = P(T, > tITl > t),

An easy computation shows that these conditional probabilities are each
equal to exp(-xzt). Thus, Theorem 4.4 may be applied when the joint distri-
bution belongs to the family of Marshall-Olkin MVE distributions, whereas
Theorem 4.1 cannot be applied here since (A2) fails.

In Section 3 we assumed that the risks were mutually independent (A1)
and that the functions F(, I), I € I, had no common discontimities (A3)°'.
Under these assumptions the basic formula (2.2) yielded the K-M estimators

for the marginal distribution Ml (r = 2) and the functions M_, I ¢ I, (r 2 2).

I’
In a similar fashion formula (2.2) (via Theorem 4.4) can be used to determine
strongly consistent estimators for the functions MI, I €1, in the important
practical cases when independence fails to hold and simultaneous causes of
death are allowed.

The key tool we shall use in establishing consistent estimators for the: '
marginal distributions of interest is given in Theorem 4.7 below. First we

introduce some notation. As above, T= (Tl, e T}) is a vector of nonnegative
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random variables, T = nin(’l‘j, 1 £ j s r) represents the life length of an
individual exposed to r risks of death and £ represents the cause of death,
where £ = J if and only if t = T

for each j e Jand t = T, for each j § J,

j i
Jel. For each I € T and Borel set A, let F(A, I) = P(t ¢ A, £ = I). Let

T have distribution function F and let D(I) [C(I)] be the set of discontinuities
[continuities] of the function F(-, I). There exists, by Theorem 2.1, a
collection {H;, I € I} of independent random variables such that H m'_l‘_, where
H= min(HI. I € I). Moreover, the probability Ei(t‘) = P(HI 2 t) may be
obtained from (2.2). Now let Ii = Crli’ ceos Tri)’ i=1,2, ..., bea
sequence of nonnegative random vectors (representing a sequence of individuals)
and G, . be the

1,i’ By» 1,i
analogues of t, &, F(-, I), F, D(I), C(I), Hy, H, and G, above. Let rCrDy

and let Ti’ Ei' Fi('n I)u Fi’ D(I: i)p C(I’ i)n H

denote the continuous (discontinuous) part of F.

Theorem 4.7. Suppose the following conditions hold:
4(i) For I # J, the pair {F(-, I), F(+, J))} as well as each pair {F:l(" I),
Fi(" BN}, i=1, 2, ..., have no common discontinuities.

4(ii) PFor I € 1 and 0 s t s a(F),
C
linn_w Fn({[O, t] n C(I)}, 1) = F ([0, t], I).
4(iii) For 1 e 1,

lim swp |F (00, u] n D(I)), D) - FO([0, u], D] = 0.
me 0stsa(F)

4(4v) lm  swp [F (0) - F(v)] = 0.
e 0st<a(F)
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Then for I ¢ T and 0 < t < a(F),

lim G, _(t") = 6 (th). (4.9)
e I,n i |

The proof of Theorem 4.7 is given in Section 5.

Consider now the estimation problem posed above. Let 1'_1 = [Tn, S5 - i)’
i=1, 2, ..., be independent and identically distributed as T = ('l'l, Sohis Tr).
Replace F(-, I) and F by their empirical counterparts, ﬁn(-, I) and ﬁn,
respectively, on the right in (2.2). The resulting expression, call it a.I,n’
is an estimator for G,. Assume that T satisfies (4.8a, b). Then (4.7) holds.

I
A natural estimator for MI (t) in this case, then, is

Ml,n(t) = I

g, _(t). (4.10)
Jel J,n

I
Such an estimator will be strongly consistent if for every J ¢ II’

A

- + .
Gy ot > By(t") aus. (4.11)
We now show that this is a simple consequence of Theorem 4.7.

In Theorem 4.7 identify F_(*, I) with ﬁn(o, I) and F_with ﬁn, where

a -1 n
F(, )=n" }

X
i=1 {Ti £, Ei = I}

§ o1 %
n(t) i izlxhi < t}’

and Xa is the indicator function of the set A. Define
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- -ln
Fema® =7 IXG e (0, i acm), g = 1

3%
pD(I).n(t) i 1§1x{‘i e [0, t] n D(D), E = I}.

It follows that

ﬁn(-, I = ﬁC(I),n + ﬁD(I),n (4.12)

Pow TR . (4.13)
n et I,n

We denote the common domain of all random variabies by 2. To prove (4.11), it
suffices to verify conditions 4(i) - 4(iv) of Theorem 4.7 for almost every
w e Q.

Condition 4(i) holds trivially. By the strong law of large mumbers, we

have that as n » =,

foeny aft) * FC([0, t], I) a.s., t 2 0 (4.14)

focry alt) > FO([0, t], I) a.s., t 2 O. (4.15)

Condition 4(ii) follows from (4.14). By the Glivenko-Cantelli Theorem,

IMswl%&)-Hﬂl#OLL (4.16)
e £20
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Thus, condition 4(iv) holds. Since the function FC([0, t], I) is a continuous
3 . function of t, it follows that the convergence in (4.14) is uniform in t.
Thus, we may conclude from (4.12) and (4.16) that the convergence in (4.15)

is uniform in t 2 0 and so condition 4(iii) holds.

L] . E s s LI )
Remark 4.8. Let 0 = 1 (0) T oY) < t(n) denote the ordered values of

Tys cees Ty In analogy with the Kaplan-Meier estimator (3.2), the estimator

(4.10) may be expressed as follows:

M) = 1 [(@ - 9/ -4+ D, (4.17)

where the product is over the ranks i of those ordered observations t.(i.)’

<is <
1<1is<n, such that < (i) t < T(n) and T 1) corresponds to a death from the
simultaneous causes j € J, J ¢ II. If for some i, ) = ‘l‘ji for each j ¢ J,

Je II’ then (4.17) is defined to be zero for t > t Otherwise, (4.17) is

m)°

undefined for t > t "

In view of Remark 4.8 and the preceding argument, we have proven:

Theorem 4.9. In the competing risks model of Section 3, assume only that the
functions F(+, I), I € I, have no common discontinuities, and the joint distri-
bution of (Tl' g Tr) satisfies (4.8a, b). Then the estimator (4.17) is
strongly consistent for ﬁl'

Remark 4.10. To show consistency of the K-M estimator in the independent case,
Peterson (1977) must rely on a property of an operator defined on a space of
discrete distribution functions (which he states without proof). If we assume
that the risks are independent and that assumption (A3)' holds, then by applying
Theorem 4.7 above, as we did in the dependent case, we not only have a stronger
proof of the consistency of the K-M estimator [since (A3) implies (A3)'], but

also one which is considerably more elementary.
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S. Proofs.
Before we give a proof of Theorem 4.4, we state two lemmas which are

proven in LPQ (1978).

Lemma 5.1. For every probability measure Q (with a possibie atom at «) such
that Q(0°) = 1, and every t 2 0, the following holds:

qe) = expl-[5aQ"/Q - 1 RE@AED). (s.1)

where the product is over the set {a} of disconi:inu:ltios of Q, and the product over
an empty set is defined to be 1.
Lemma 5.2. Let {EI, I € I} be a collection of survival probabilities

satisfying (2.2). Then for each I ¢ I and t ¢ [0, a(F)),
F(t)/F(t7), t e D(F(:, 1))

EI (t) /EI (t-) -
1 otherwise.

Proof of Theorem 4.4. Suppose (4.8a, b) holds. By (4.8a),

D(F(-, T;)) = D(My), T e 1. (5.2)

For every Borel set B c [0, a(F)),

F(B, II) EP(TeB, §(D ¢ II)
= P(T; ¢ B, T, < Ty,)
- { P(Ty, 2 ulTy = u) dMy(u) |
= [ PTy > ulTy > u) ) [by 4.800)]

= | (Fu)/My(u) aMy(u).
B
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Thus, for every Borel set B < [0, a(F)),
F(B, 1) = { (F/M)) am,.
Relations (5.2) and (5.3) together imply that
(e, 1)/amC = T
It follows that

1 Ty(e) = expl-[5IaF°(-, 1)/F) 1 [F(a)/F(a7))
Jel, aeD(F(+, 1))

= exp{-f;[dﬂlc/ﬁlll n

(M, (a)/¥M (7))
aeD(MI)

[by 4.8a)
= ﬁl(t) [by Lemma 5.1].

Conversely, suppose (4.7) holds. By (2.2) and Lemma 5.1,

exp{-!f,[drc(- » 1/F1} gt[-f(a)/?(a')]
a
aeD(F(-, 1,))

= exp(-[5(am, /M) 1 0y )/ ().
acD(MI]

Letting N denote the product over sets J ¢ 11, we have

My (@)@ (e7) = 1(E,(a))/n(Gy(a7)]
n[F(a)/F(a’)], a € D(F(*, J))

-

1 otherwise
F(a)/F(a"), a € D(F(+, 1))

n 4

1 othmiso.

\

(5.3)

(5.4)
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Thus, (4.8a) holds. Equation (4.8b) follows from (5.4) by cancellatiom. ||
Before we prove Theorem 4.7, we make two explanatory remarks.

Remark S.3. Assumptions 4(i) and 4(ii) of Theorem 4.7 together imply that
for I el,

lim  swp Il’n({t}, I) - F({t}, )| = 0.
me 0st<a(F)

Remark 5.4. Remark 5.3 implies that for I ¢ I,

D(I) e v n D(I, k).
n=1 kan

The proof of Theorem 4.7 is based upon the following three lemmas.

Lesma 5.5. Under assumptions 4(i)-4(iv) of Theorem 4.7,

a = y_aa(l’n) 2 a(F).
nee

Proof. It suffices to consider the case a < =. Let {m} be an arbitrary

infinite subsequence of {1, 2, ...} such that lim a(F ) = a. By definition,

m— s " —

Fpla(FRdl = 2. By 4(iv), lin Fla(F )] = 0. tencs F(a) = 0. Relation (5.5)
moe

follows from the definition of a(F). ||

In Lemmas 5.6 and 5.7 below, let {m} denote an arbitrary infinite sub-
sequence of {1, 2, ...}, let I ¢ 1, and let 0 < t < a(F).

Lemma 5.6, Let

I -
.l;ol(t) .“E(I)XD(IOI) (.) x[O,C) n (osc(P-))"n[FI(‘),rI(‘ )].

Bi(¢) b PD® X(o,6) n (0,00 FO/F.

(5.5)
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1 ¢
:E Bl.n(t) s By(t). (5.6)

Proof. By Fatou's Lemma,

s, )< ] Ta
'.. »

x (a) l.n[l’;n (a)ﬂ; =))].
aeD(I) m»= D(I,m) n [0, t) n [0,a(F)) 4

By Remark 5.3, lim Xp(1 n)(a.J = 1 for a € D(I). By Lemma 5.5, lim yx (a)
mhe ¥ mhe [o.t) n [0.0("-))

= "[o,t) (a). Assumption 4(iv) implies that
lin tn[F ()/F,(a7)] = n[F(a)/F(a")].
mhe

Relation (5.6) follows. “

Lemma 5.7. Let

t) = J

(a) n(F @)/F @
i acD(I,;)x[o,t).n [°'°("m)) n 660 n(F (a)/F (a )]‘ |

o 2R 0 (0,0 )M 45 0. D

B, (t)

x (a) en[F(a)/F(a"))
aeD(I) [0,t) n [0,a(F)) n C(I)

[;{t)["c(n n [o.a(mm dr(-, I).

=l (o) <8, 5.7
.,.2,l() 2 (t) (5.7
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Proof. Let € > 0. By 4(i),

mim._)x[o.t) 0 [0,a(F)) 0 c(ny ™ IFy (8)/F (7))

_ YFg(lu}, 1)
[l + Fy((u}, D/F ] dF (u, D

-

X (u)
[0,¢) D(I,m) n C(I) n [0,a(F))

; ’[5{:)[""“-') 0 G n f0,a(e))/T) 4 Fyls D

for m sufficiently large by 4(iv). Again by 4(iv),

ey Xectm o (0,0 Fad ¢ Falts D

Se ta{t)[xc(l) n C(I,m) n [o.u(p.))/ﬂ dF (-, D.

Hence

I .
By a(t) S2¢ [oz{_” Xeery o (o,a(e )P 4 Fults D

for 0 < § < t. It follows from Lemma 5.5 that

(u) % (u) .
o OS:‘sqt’-Gh[o't“] n [0,a(F)) Xpo,t-81! = O

Therefore, for m sufficiently large,
I
32..(:) S 2c¢+ ¢/F(t) (o:{-c] ["cmm dF (, D).

Using the Helly-Bray Theorem, we conclude from 4(ii) that

¥ 7
1V

1
\ E By a(t) S (o:{-c] ["cmm dF(., 1) |

for every § such that 0 < § < t. Relation (5.7) is established by letting
s+0. ||
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Proof of Theorem 4.7. Let I €1, 0 st s a(F), and {m} be an arbitrary infinite

subsequence of {1, 2, ...}. By (2.2),
§;,a) = explB] L(0) + By (0]

By Lemmas 5.6 and 5.7,

EE (t)Sexp[B (t)+s (t)]-c h.
mroe

By Theorem 2.1, we may conclude that

P(r, 2 t) = nl [ n(t’).
e »

Thus,

(t’)slnl'ﬁ'I (t)sIIIIG(t)-F(t)
€l mre

Ft')=1im 1 G

mre el I

s % red
Beace, T &; () = Biee). 1|
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